Avoiding post-processing with event-based detection in biomedical signals
OBJECTIVE: Finding events of interest is a common task in biomedical signal processing. The detection of epileptic seizures and signal artefacts are two key examples. Epoch-based classification is the typical machine learning framework to detect such signal events because of the straightforward appl...
Gespeichert in:
Veröffentlicht in: | Ieee Transactions On Biomedical Engineering 2024-03, Vol.71 (8) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | OBJECTIVE: Finding events of interest is a common task in biomedical signal processing. The detection of epileptic seizures and signal artefacts are two key examples. Epoch-based classification is the typical machine learning framework to detect such signal events because of the straightforward application of classical machine learning techniques. Usually, post-processing is required to achieve good performance and enforce temporal dependencies. Designing the right post-processing scheme to convert these classification outputs into events is a tedious, and labor-intensive element of this framework. METHODS: We propose an event-based modeling framework that directly works with events as learning targets, stepping away from ad-hoc post-processing schemes to turn model outputs into events. We illustrate the practical power of this framework on simulated data and real-world data, comparing it to epoch-based modeling approaches. RESULTS: We show that event-based modeling (without tailored post-processing) performs on par with or better than epoch-based modeling with extensive post-processing. CONCLUSION: These results show the power of treating events as direct learning targets, instead of using ad-hoc post-processing to obtain them, severely reducing design effort. Significance The event-based modeling framework can easily be applied to other event detection problems in signal processing, removing the need for intensive task-specific post-processing. |
---|---|
ISSN: | 0018-9294 |