Biological Assay to Determine Gonadotropin Potency: From In Vivo to In Vitro Sustainable Method
Various preparations of follicle-stimulating hormone (FSH) are commercially available; however, they differ in glycoforms composition and purity owing to their respective sources. Additional chemical/physical changes can also be introduced during manufacturing and can impact their biological activit...
Gespeichert in:
Veröffentlicht in: | INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2023-04, Vol.24 (9) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Various preparations of follicle-stimulating hormone (FSH) are commercially available; however, they differ in glycoforms composition and purity owing to their respective sources. Additional chemical/physical changes can also be introduced during manufacturing and can impact their biological activity (biopotency), which is routinely assessed using an in vivo bioassay (Steelman-Pohley). This study aimed to determine whether an in vitro bioassay could assess biopotency by distinguishing between r-hFSH chemical/physical variants with similar ability to the in vivo bioassay. The specific activity (units of biological activity per mg of product) of variants of r-hFSH generated through enrichment (acidic/basic), stress (oxidative/acidic pH) and enzymatic treatment (desialylation and desialylation/degalactosylation) was compared using the in vivo and in vitro bioassays. The in vitro bioassay reliably detected potential chemical/physical modifications in r-hFSH variants that may impact biopotency. Overall, the methods demonstrated a comparable ability to detect changes in specific activities due to chemical/physical differences in r-hFSH variants. These data indicate that the in vitro bioassay is suitable to replace the in vivo bioassay. |
---|---|
ISSN: | 1661-6596 |