Bridging the Green Gap: Monochromatic InP-Based Quantum-Dot-on-Chip LEDs with over 50% Color Conversion Efficiency
Solid-state light-emitting diodes (LEDs) emit nearly monochromatic light, yet seamless tuning of emission color throughout the visible region remains elusive. Color-converting powder phosphors are therefore used for making LEDs with a bespoke emission spectrum, yet broad emission lines and low absor...
Gespeichert in:
Veröffentlicht in: | NANO LETTERS 2023-06, Vol.23 (12), p.5490-5496 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solid-state light-emitting diodes (LEDs) emit nearly monochromatic light, yet seamless tuning of emission color throughout the visible region remains elusive. Color-converting powder phosphors are therefore used for making LEDs with a bespoke emission spectrum, yet broad emission lines and low absorption coefficients compromise the formation of small-footprint monochromatic LEDs. Color conversion by quantum dots (QDs) can address these issues, but high-performance monochromatic LEDs made using QDs free of restricted, hazardous elements remain to be demonstrated. Here, we show green, amber, and red LEDs formed using InP-based QDs as on-chip color convertor for blue LEDs. Implementing QDs with near-unity photoluminescence efficiency yields a color conversion efficiency over 50% with little intensity roll-off and nearly complete blue light rejection. Moreover, as the conversion efficiency is mostly limited by package losses, we conclude that on-chip color conversion using InP-based QDs can provide spectrum-on-demand LEDs, including monochromatic LEDs that bridge the green gap. |
---|---|
ISSN: | 1530-6984 |