The land use impacts of forestry and agricultural systems relative to natural vegetation; a fundamental energy dissipation approach
In agriculture and forestry the land use impacts that occur during production are important; including as necessary inputs for life cycle assessments. There are major differences in land use impacts between different forest management approaches and, in future, those forestry systems which deliver e...
Gespeichert in:
Veröffentlicht in: | SCIENCE OF THE TOTAL ENVIRONMENT 2022-12, Vol.850 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In agriculture and forestry the land use impacts that occur during production are important; including as necessary inputs for life cycle assessments. There are major differences in land use impacts between different forest management approaches and, in future, those forestry systems which deliver ecosystem services while having lower adverse land use impacts will be of greater value. Here we examine the land use impacts of seven contrasting forest management approaches and agricultural cropping systems at five locations in Europe. Comprehensive management data were used to calculate land use impacts in an evaluation system based on ecosystem thermodynamics. This approach has a number of advantages, including that it is suitable for input to life cycle assessment. This is the first time this approach has been used at a number of agricultural and forestry sites. We show that agriculture tends to have higher land use impacts than forestry. Those forestry systems that are more intensively managed in shorter rotations have larger land use impacts when calculated for the entire rotation, but this is not the case when land use impact is calculated on the basis of production unit. These findings support the use of landscape mosaics with some high production areas and will be of increasingly significance as we seek to achieve economic growth without environmental degradation. That managed forests have relatively low land use impacts has important implications for forestry restoration and climate mitigation programmes, including the forestry components of Nationally Determined Contributions under the UN Framework Convention on Climate Change. |
---|---|
ISSN: | 0048-9697 |