Magneto-Hydrodynamic Mixing: a New Technique for Preparing Carbomer Hydrogels
Abstract Magnetohydrodynamic mixing was evaluated as an alternative to conventional high shear mixing in the preparation of carbomer hydrogels containing 1.22 wt.% Carbopol? 980 NF. Neutralization of the carbomer dispersion (pH = 2.74) with triethanolamine (TEA) enabled to adjust the pH of the mixtu...
Gespeichert in:
Veröffentlicht in: | Aiche Journal 2022-09, Vol.69 (2) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Magnetohydrodynamic mixing was evaluated as an alternative to conventional high shear mixing in the preparation of carbomer hydrogels containing 1.22 wt.% Carbopol? 980 NF. Neutralization of the carbomer dispersion (pH = 2.74) with triethanolamine (TEA) enabled to adjust the pH of the mixture and tune the viscosity of the hydrogel. Using high shear mixing, this approach was limited to 0.2 wt.% TEA (pH = 3.83) as the gel became too viscous and the recirculation flow dropped from 12 to 0.3 m3/h. Magnetohydrodynamic mixing enabled to reach TEA concentrations up to 1.0 wt.% (pH = 5.31). Apparent viscosity measurements on samples having 0.2 wt.% TEA revealed lower viscosities for carbomer hydrogels prepared with high shear mixing, i.e. 6,800 mPa·s versus 8,800 mPa for magneto-hydrodynamic mixing. Based on 1H NMR evidence, this decrease in apparent viscosity was attributed to structural damage to the carbomer backbone in combination with mechanochemical degradation of the added TEA. |
---|---|
ISSN: | 0001-1541 |