Propagation of Singular Behavior for Gaussian Perturbations of Random Matrices
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature. We study the asymptotic behavior of the eigenvalues of Gaussian perturbations of large Hermitian random matrices for which the limiting eigenvalue density vanishes at a singular interior point or vanishes faster than a square root at a s...
Gespeichert in:
Veröffentlicht in: | COMMUNICATIONS IN MATHEMATICAL PHYSICS 2018-08, Vol.362 (1), p.1-54 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. We study the asymptotic behavior of the eigenvalues of Gaussian perturbations of large Hermitian random matrices for which the limiting eigenvalue density vanishes at a singular interior point or vanishes faster than a square root at a singular edge point. First, we show that the singular behavior propagates macroscopically for sufficiently small Gaussian perturbations, and we describe the macroscopic eigenvalue behavior for Gaussian perturbations of critical size. Secondly, for sufficiently small Gaussian perturbations of unitary invariant random matrices, we prove that the microscopic eigenvalue correlations near the singular point are described by the same limiting kernel as in the unperturbed case. We also interpret our results in terms of nonintersecting Brownian paths with random starting positions, and we establish multi-time generalizations of the microscopic results. |
---|---|
ISSN: | 0010-3616 |