Tragedy of the commons in Melipona bees revisited

Melipona stingless bees display a paradoxical overproduction of queens, which are later eliminated by nest-mate workers. Mechanistically, it was suggested that the monoterpenoid geraniol deposited into newly provisioned cells by adult bees would cause larvae to develop into queens in Melipona beeche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIOLOGY LETTERS 2022-01, Vol.18 (1)
Hauptverfasser: Caliari Oliveira, Ricardo, Di Pietro, Viviana, Quezada-Euan, Jose Javier G, Ramirez Pech, Jorge, Moo-Valle, Humberto, Wenseleers, Tom
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Melipona stingless bees display a paradoxical overproduction of queens, which are later eliminated by nest-mate workers. Mechanistically, it was suggested that the monoterpenoid geraniol deposited into newly provisioned cells by adult bees would cause larvae to develop into queens in Melipona beecheii. This system could be evolutionarily stable if many of these new queens were to leave the nest and parasitize other genetically unrelated colonies nearby, as was shown to occur in a congeneric species. Here, we use microsatellite markers to test whether queen overproduction could be a strategy by which adult workers control the caste fate of the developing larvae to export copies of their own genes to the rest of the population via queen parasitism in M. beecheii. In addition, we re-examined whether artificially increasing the levels of geraniol indeed caused larvae to develop as queens rather than workers. Contrary to our prediction, we found no evidence for queen parasitism in M. beecheii and observed no effect of geraniol on the rearing of new queens. Together, these results support the original 'tragedy of the commons' hypothesis for queen overproduction in Melipona bees, where individual larvae selfishly bias their development towards the queen pathway according to their best evolutionary interests.
ISSN:1744-9561