Cell-specific transcriptional control of mitochondrial metabolism by TIF1 gamma drives erythropoiesis

Transcription and metabolism both influence cell function, but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. We discovered, using a chemical suppressor screen, that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SCIENCE 2021-05, Vol.372 (6543), p.716-+
Hauptverfasser: Rossmann, Marlies P, Hoi, Karen, Chan, Victoria, Abraham, Brian J, Yang, Song, Mullahoo, James, Papanastasiou, Malvina, Wang, Ying, Elia, Ilaria, Perlin, Julie R, Hagedorn, Elliott J, Hetzel, Sara, Weigert, Raha, Vyas, Sejal, Nag, Partha P, Sullivan, Lucas B, Warren, Curtis R, Dorjsuren, Bilguujin, Greig, Eugenia Custo, Adatto, Isaac, Cowan, Chad A, Schreiber, Stuart L, Young, Richard A, Meissner, Alexander, Haigis, Marcia C, Hekimi, Siegfried, Carr, Steven A, Zon, Leonard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transcription and metabolism both influence cell function, but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. We discovered, using a chemical suppressor screen, that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). This rescue depends on the functional link of DHODH to mitochondrial respiration. The transcription elongation factor TIF1γ directly controls coenzyme Q (CoQ) synthesis gene expression. Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon's bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage.
ISSN:0036-8075