On the Covering Radii of Binary RM Codes in the Set of Resilient Boolean Functions
Let R-t,R-n be the set of t-resilient Boolean functions in n variables, and let (p) over cap (t, r, n) be the maximum distance between t-resilient functions and the rth-order Reed-Muller code RM (r, n). We prove that,6(t, 2, 6) = 16 for t = 0, 1, 2 and)5(3, 2, 7) = 32, from which we derive the lower...
Gespeichert in:
Veröffentlicht in: | IEEE Transactions on Information Theory 2005, Vol.51 (3), p.1182-1189 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R-t,R-n be the set of t-resilient Boolean functions in n variables, and let (p) over cap (t, r, n) be the maximum distance between t-resilient functions and the rth-order Reed-Muller code RM (r, n). We prove that,6(t, 2, 6) = 16 for t = 0, 1, 2 and)5(3, 2, 7) = 32, from which we derive the lower bound (p) over cap (t, 2, n) greater than or equal to 2(n-2) with t less than or equal to n - 4. |
---|---|
ISSN: | 0018-9448 |