Iron oxide labeling does not affect differentiation potential of human bone marrow mesenchymal stem cells exhibited by their differentiation into cardiac and neuronal cells

Mesenchymal stem cells (MSCs) have shown promising outcomes in cardiac and neuronal diseases. Efficient and noninvasive tracking of MSCs is essential to harness their therapeutic potential. Iron oxide nanoparticles (IONPs) have emerged as effective means to label stem cells and visualize them using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MOLECULAR AND CELLULAR BIOCHEMISTRY 2018-11, Vol.448 (1-2), p.17-26
Hauptverfasser: Mohanty, Sujata, Jain, Krishan Gopal, Nandy, Sushmita Bose, Kakkar, Anupama, Kumar, Manoj, Dinda, Amit Kumar, Singh, Harpal, Ray, Alok
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mesenchymal stem cells (MSCs) have shown promising outcomes in cardiac and neuronal diseases. Efficient and noninvasive tracking of MSCs is essential to harness their therapeutic potential. Iron oxide nanoparticles (IONPs) have emerged as effective means to label stem cells and visualize them using magnetic resonance imaging (MRI). It is known that IONPs do not affect viability and cell proliferation of stem cells. However, very few studies have demonstrated differentiation potential of iron oxide-labeled MSCs and their differentiation into specific lineages that can contribute to cellular therapies. The differentiation of IONP-labeled human bone marrow mesenchymal stem cells (hBM-MSCs) into cardiac and neuronal lineages has never been studied. In this study, we have shown that IONP-labeled hBM-MSCs retain their differentiation potential to cardiac and neuronal cell lineages. We also confirmed that labeling hBM-MSCs with IONP does not affect their characteristic properties such as viability, cellular proliferation rate, surface marker profiling, and trilineage differentiation capacity. This study shows that IONP can be efficiently tracked, and its labeling does not alter stemness and differentiation potential of hBM-MSCs. Thus, the labeled hBM-MSCs can be used in clinical therapies and regenerative medicine.
ISSN:0300-8177