Effects of pollen and nectar inoculation by yeasts, bacteria or both on bumblebee colony development
It is increasingly recognized that gut microbiota have a major effect on the physiology, biology, ecology and evolution of their animal hosts. Because in social insects, the gut microbiota is acquired through the diet and by contact with nest provisions, it can be hypothesized that regular supplemen...
Gespeichert in:
Veröffentlicht in: | Oecologia 2021-03, Vol.195 (3), p.689-703 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is increasingly recognized that gut microbiota have a major effect on the physiology, biology, ecology and evolution of their animal hosts. Because in social insects, the gut microbiota is acquired through the diet and by contact with nest provisions, it can be hypothesized that regular supplementation of microorganisms to the diet will have an impact on the fitness of the consumer and on the development of the whole colony. To test this hypothesis, we investigated how supplementation of bacteria, yeasts, and combinations of the two to either pollen or nectar affected colony development in the social bumblebee Bombus terrestris. Three yeasts and three bacterial species that live at the flower-insect interface were used in the experiments and the development of bumblebee colonies was monitored over a period of 10 weeks. The results showed that administration of microbes via pollen had a stronger positive impact on colony development than when provided via sugar water. Supplementation of bacteria led, in general, to a faster egg laying, higher brood size and increased production of workers during the first weeks, whereas yeasts or a combination of yeasts and bacteria had less impact on colony development. However, the results differed between microbial species, with Wickerhamiella bombiphila and Rosenbergiella nectarea showing the strongest increase in colony development. Torulaspora delbrueckii induced early male production, which is likely a fitness cost. We conclude that the tested bacteria-yeast consortia did not result in better colony development than the interacting species alone. |
---|---|
ISSN: | 0029-8549 |