Identification of GSK-3 as a Potential Therapeutic Entry Point for Epilepsy
In view of the clinical need for new antiseizure drugs (ASDs) with novel modes of action, we used a zebrafish seizure model to screen the anticonvulsant activity of medicinal plants used by traditional healers in the Congo for the treatment of epilepsy, and identified a crude plant extract that inhi...
Gespeichert in:
Veröffentlicht in: | ACS CHEMICAL NEUROSCIENCE 2019-04, Vol.10 (4), p.1992-2003 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In view of the clinical need for new antiseizure drugs (ASDs) with novel modes of action, we used a zebrafish seizure model to screen the anticonvulsant activity of medicinal plants used by traditional healers in the Congo for the treatment of epilepsy, and identified a crude plant extract that inhibited pentylenetetrazol (PTZ)-induced seizures in zebrafish larvae. Zebrafish bioassay-guided fractionation of this anticonvulsant Fabaceae species, Indigofera arrecta, identified indirubin, a compound with known inhibitory activity of glycogen synthase kinase (GSK)-3, as the bioactive component. Indirubin, as well as the more potent and selective GSK-3 inhibitor 6-bromoindirubin-3'-oxime (BIO-acetoxime) were tested in zebrafish and rodent seizure assays. Both compounds revealed anticonvulsant activity in PTZ-treated zebrafish larvae, with electroencephalographic recordings revealing reduction of epileptiform discharges. Both indirubin and BIO-acetoxime also showed anticonvulsant activity in the pilocarpine rat model for limbic seizures and in the 6-Hz refractory seizure mouse model. Most interestingly, BIO-acetoxime also exhibited anticonvulsant actions in 6-Hz fully kindled mice. Our findings thus provide the first evidence for anticonvulsant activity of GSK-3 inhibition, thereby implicating GSK-3 as a potential therapeutic entry point for epilepsy. Our results also support the use of zebrafish bioassay-guided fractionation of antiepileptic medicinal plant extracts as an effective strategy for the discovery of new ASDs with novel mechanisms of action. |
---|---|
ISSN: | 1948-7193 1948-7193 |