Bio-inspired design for enhanced damage tolerance of self-reinforced polypropylene/carbon fibre polypropylene hybrid composites

© 2019 Elsevier Ltd In this work, we investigate the toughness of an inter-layer Self-Reinforced Polypropylene/Carbon Fibre Polypropylene (SRPP/CFPP) cross-ply hybrid composite and devise strategies to improve two aspects of its damage tolerance: (i) increasing the energy dissipation capability and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING 2019-06, Vol.121, p.341-352
Hauptverfasser: Mencattelli, Lorenzo, Tang, Jun, Swolfs, Yentl, Gorbatikh, Larissa, Pinho, Silvestre T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:© 2019 Elsevier Ltd In this work, we investigate the toughness of an inter-layer Self-Reinforced Polypropylene/Carbon Fibre Polypropylene (SRPP/CFPP) cross-ply hybrid composite and devise strategies to improve two aspects of its damage tolerance: (i) increasing the energy dissipation capability and (ii) enhancing the impact damage tolerance. To this end, we introduced discontinuities in the form of laser-cuts across the fibres of the CFPP plies, tailoring two patterns of laser-cuts to meet each specific damage tolerance requirement. We conducted penetration impact and Double Edge Notched Tensile (DEN-T) tests. The DEN-T tests, analysed via the Essential Work of Fracture method, show that engineering the microstructure successfully diffused damage. This resulted in a great increase in energy dissipation capability - 90% higher than a reference non-engineered structure. Engineering the microstructure of impact samples has led to enhanced impact damage tolerance with increased energy dissipation at a sub-critical level and delayed critical failure.
ISSN:1359-835X