Fingerprinting Electronic Structure of Heme Iron by Ab Initio Modeling of Metal L-Edge X-ray Absorption Spectra

The capability of the multiconfigurational restricted active space approach to identify electronic structure from spectral fingerprints is explored by applying it to iron L-edge X-ray absorption spectroscopy (XAS) of three heme systems that represent the limiting descriptions of iron in the Fe-O2 bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOURNAL OF CHEMICAL THEORY AND COMPUTATION 2019-01, Vol.15 (1), p.477-489
Hauptverfasser: Guo, Meiyuan, Kallman, Erik, Pinjari, Rahul V, Couto, Rafael C, Sorensen, Lasse Kragh, Lindh, Roland, Pierloot, Kristine, Lundberg, Marcus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The capability of the multiconfigurational restricted active space approach to identify electronic structure from spectral fingerprints is explored by applying it to iron L-edge X-ray absorption spectroscopy (XAS) of three heme systems that represent the limiting descriptions of iron in the Fe-O2 bond, ferrous and ferric [Fe(P)(ImH)2]0/1+ (P = porphine, ImH = imidazole), and FeII(P). The level of agreement between experimental and simulated spectral shapes is calculated using the cosine similarity, which gives a quantitative and unbiased assignment. Further dimensions in fingerprinting are obtained from the L-edge branching ratio, the integrated absorption intensity, and the edge position. The results show how accurate ab initio simulations of metal L-edge XAS can complement calculations of relative energies to identify unknown species in chemical reactions.
ISSN:1549-9618