Minimization of Ionic Transport Resistance in Porous Monoliths for Application in Integrated Solar Water Splitting Devices
Monolithic solar water splitting devices consist of photovoltaic materials integrated with electrocatalysts and produce solar hydrogen by water splitting upon solar illumination in one device. Upscaling of monolithic solar water splitting devices is obstructed by high ohmic losses in the electrolyte...
Gespeichert in:
Veröffentlicht in: | Journal of Physical Chemistry C 2016-08, Vol.120 (38), p.21242-21247 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Monolithic solar water splitting devices consist of photovoltaic materials
integrated with electrocatalysts and produce solar hydrogen by water splitting upon solar illumination in one device. Upscaling of monolithic solar water splitting devices is obstructed by high ohmic losses in the electrolyte due to long ionic transport distances. A new design overcomes the problem by introducing micron sized pores in a silicon wafer
substrate coated with electrocatalysts. A porous solar hydrogen device was simulated by applying a current corresponding to ca. 10% solar-to-hydrogen efficiency. Porous monoliths of 550 μm thickness with varying pore size and spacing were fabricated by laser ablation and electrochemically characterized. Ohmic losses well below 100 mV were
reached at 14.4% porosity with 77 μm pores spaced 250 μm apart in 0.25 M KOH electrolyte. In 1 M KOH, 100 mV was reached at 6% porosity with 1 mm pore spacing. Our results suggest ohmic losses below 50 mV can be achieved when using 10 μm thick substrates at 0.2% porosity. These findings make it possible for monolithic solar water splitting devices to be scaled without loss of efficiency. |
---|---|
ISSN: | 1932-7447 |