The ALPHATRAP experiment
© 2019, The Author(s). The ALPHATRAP experiment at the Max-Planck Institute for Nuclear Physics in Heidelberg aims at probing the validity of quantum electrodynamics in extremely strong electromagnetic fields. To this end, ALPHATRAP will determine the value of the magnetic moment, or the g-factor, o...
Gespeichert in:
Veröffentlicht in: | EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS 2019-02, Vol.227 (13), p.1425-1491 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | © 2019, The Author(s). The ALPHATRAP experiment at the Max-Planck Institute for Nuclear Physics in Heidelberg aims at probing the validity of quantum electrodynamics in extremely strong electromagnetic fields. To this end, ALPHATRAP will determine the value of the magnetic moment, or the g-factor, of the electron bound in highly charged ions. Quantum electrodynamics predicts this value with extraordinary precision. As the bound electron in highly charged ions is exposed to the strongest fields available for high-precision spectroscopy in the laboratory, reaching up to 10 16 V/cm in hydrogenlike lead 208 Pb 81+ , a comparison of the theoretical prediction with a measured value can yield the most stringent test of the Standard Model in strong fields. The targeted precision of eleven digits or more can be achieved by storing single highly charged ions in a cryogenic Penning trap, where its eigenfrequencies can be determined with ultra-sensitive electronics to highest precision. Additionally, the spin state can be non-destructively determined using the continuous Stern-Gerlach effect, allowing spectroscopy of the Larmor precession. ALPHATRAP is constructed to enable the injection and the storage of externally produced ions. The coupling to the Heidelberg EBIT gives access to even the heaviest highly charged ions and thus extends the available field strength by more than two orders of magnitude compared to previous experiments. This article describes the technical architecture and the performance of ALPHATRAP and summarises the experimental measurement possibilities. |
---|---|
ISSN: | 1951-6355 |