DNA capture into the ClyA nanopore: diffusion-limited versus reaction-limited processes
The capture and translocation of biomolecules through nanometer-scale pores are processes with a potentially large number of applications, and hence they have been intensively studied in recent years. The aim of this paper is to review existing models of the capture process by a nanopore, together w...
Gespeichert in:
Veröffentlicht in: | JOURNAL OF PHYSICS-CONDENSED MATTER 2018-08, Vol.30 (30) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The capture and translocation of biomolecules through nanometer-scale pores are processes with a potentially large number of applications, and hence they have been intensively studied in recent years. The aim of this paper is to review existing models of the capture process by a nanopore, together with some recent experimental data of short single- and double-stranded DNA captured by the Cytolysin A (ClyA) nanopore. ClyA is a transmembrane protein of bacterial origin which has been recently engineered through site-specific mutations, to allow the translocation of double- and single-stranded DNA. A comparison between theoretical estimations and experiments suggests that for both cases the capture is a reaction-limited process. This is corroborated by the observed salt dependence of the capture rate, which we find to be in quantitative agreement with the theoretical predictions. |
---|---|
ISSN: | 0953-8984 |