Strategies for In Vivo Genome Editing in Nondividing Cells
Programmable nucleases, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have enhanced our ability to edit genomes by the sequence-specific generation o...
Gespeichert in:
Veröffentlicht in: | Trends in Biotechnology 2018-08, Vol.36 (8), p.770-786 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Programmable nucleases, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have enhanced our ability to edit genomes by the sequence-specific generation of double-strand breaks (DSBs) with subsequent homology-directed repair (HDR) of the DSB. However, the efficiency of the HDR pathway is limited in nondividing cells, which encompass most of the cells in the body. Therefore, the HDR-mediated genome-editing approach has limited in vivo applicability. Here, we discuss a mutation type-oriented viewpoint of strategies devised over the past few years to circumvent this problem, along with their possible applications and limitations. |
---|---|
ISSN: | 0167-7799 |