Development of a coaxial extrusion deposition for 3D printing of customizable pectin-based food simulant
A coaxial extrusion printhead was designed for 3D printing of pectin-based food simulants in which the inner flow is the food-ink and the outer a CaCl2 crosslinking solution. A series of cubic-shaped objects was successfully 3D printed by changing the printing parameters including the food-ink compo...
Gespeichert in:
Veröffentlicht in: | Journal of Food Engineering 2018-01, Vol.225, p.42-52 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A coaxial extrusion printhead was designed for 3D printing of pectin-based food simulants in which the inner flow is the food-ink and the outer a CaCl2 crosslinking solution. A series of cubic-shaped objects was successfully 3D printed by changing the printing parameters including the food-ink composition, the layer height, and the rate and CaCl2 concentration of the outer flow. The printed objects did not necessitate any incubation post-treatment because the gelation of the food-ink occurred during the printing. The mechanical properties of the printed object were correlated to their final Ca2+ concentration which can be controlled by the rate and CaCl2 concentration of the outer flow. A predictive model was established for determining the printing settings to print 3D objects with a priori defined texture. The layer height was recommended to be set in function of the food-ink swelling behavior. Finally, we compared objects printed by coaxial and simple extrusion methods. The compared objects had similar Young's moduli but their other properties including volume and final Ca2+ concentration, were considerably impacted by the printing method. |
---|---|
ISSN: | 0260-8774 |