A linear 19-mer plant defensin-derived peptide acts synergistically with caspofungin against Candida albicans biofilms
Public health problems are associated with device-associated biofilm infections, with Candida albicans being the major fungal pathogen. We previously identified potent antibiofilm combination treatment in which the antifungal plant defensin HsAFP1 is co-administered with caspofungin, the preferred a...
Gespeichert in:
Veröffentlicht in: | Frontiers in Microbiology 2017-10, Vol.8 (OCT) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Public health problems are associated with device-associated biofilm infections, with Candida albicans being the major fungal pathogen. We previously identified potent antibiofilm combination treatment in which the antifungal plant defensin HsAFP1 is co-administered with caspofungin, the preferred antimycotic to treat such infections. In this study, we identified the smallest linear HsAFP1-derived peptide that acts synergistically with caspofungin or anidulafungin against C. albicans as HsLin06_18, a 19-mer peptide derived from the C-terminal part of HsAFP1. The [caspofungin + HsLin06_18] combination significantly reduced in vitro biofilm formation of C. glabrata and C. albicans on catheters, as well as biofilm formation of a caspofungin-resistant C. albicans strain. The [caspofungin + HsLin06_18] combination was not cytotoxic and reduced biofilm formation of C. albicans in vivo using a subcutaneous rat catheter model, as compared to control treatment. Mode of action research on the [caspofungin + HsLin06_18] combination pointed to caspofungin-facilitated HsLin06_18 internalization and immediate membrane permeabilization. All these findings point to broad-spectrum antibiofilm activity of a combination of HsLin06_18 and caspofungin. |
---|---|
ISSN: | 1664-302X 1664-302X |