Embedding high capacity covert channels in short message service (sms)

Covert channels constitute an important security threat because they are used to ex-filtrate sensitive information, to disseminate malicious code, and, more alarmingly, to transfer instructions to a criminal (or terrorist). This work presents zero day vulnerabilities and weak-nesses, that we discove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rafique, M. Zubair, Khan, Muhammad Khurram, Alghatbar, Khaled, Farooq, Muddassar
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covert channels constitute an important security threat because they are used to ex-filtrate sensitive information, to disseminate malicious code, and, more alarmingly, to transfer instructions to a criminal (or terrorist). This work presents zero day vulnerabilities and weak-nesses, that we discovered, in the Short Message Service (SMS) protocol, that allow the embedding of high capacity covert channels. We show that an intruder, by exploiting these SMS vulnerabilities, can bypass the existing security infrastructure (including firewalls, intrusion detection systems, content filters) of a sensitive organization and the primitive content filtering software at an SMS Center (SMSC). We found that the SMS itself, along with its value added services (like picture SMS, ring tone SMS), appears to be much more susceptible to security vulnerabilities than other services in IP-based networks. To demonstrate the effectiveness of covert channels in SMS, we have used our tool GeheimSMS that practically embeds data bytes (not only secret, but also hidden) by composing the SMS in Protocol Description Unit (PDU) mode and transmitting it from a mobile device using a serial or Bluetooth link. The contents of the overt (benign) message are not corrupted; hence the secret communication remains unsuspicious during the transmission and reception of SMS. Our experiments on active cellular networks show that 1 KB of a secret message can be transmitted in less than 3 minutes by sending 26 SMS without raising an alarm over suspicious activity.
ISSN:1865-0929