The effect of food on the intraluminal behavior of abiraterone acetate in man

To relate the reported positive effect of food on the oral bioavailability of abiraterone to the intraluminal behavior of abiraterone acetate, an in vivo experiment was performed, in which duodenal fluids and plasma samples were collected from healthy volunteers after the administration of abiratero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Pharmaceutical Sciences 2016-02, Vol.105 (9), p.2974-2981
Hauptverfasser: Geboers, Sophie, Stappaerts, Jef, Mols, Raf, Snoeys, Jan, Tack, Jan, Annaert, Pieter, Augustijns, Patrick
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To relate the reported positive effect of food on the oral bioavailability of abiraterone to the intraluminal behavior of abiraterone acetate, an in vivo experiment was performed, in which duodenal fluids and plasma samples were collected from healthy volunteers after the administration of abiraterone acetate in fasted and postprandial conditions. The plasma concentration-time profiles confirmed the positive food effect. Nevertheless, intraduodenal concentrations of abiraterone acetate and abiraterone did not fully reflect this observation. This apparent discrepancy was explored by performing several in vitro experiments including solubility, dissolution, and transfer studies. Gastrointestinal transfer studies illustrated a positive impact of gastric processing of the abiraterone acetate formulation on the duodenal concentrations in the fasted state, which could not be observed in the postprandial condition. As the influence of gastric dissolution on the intraluminal concentrations in the small intestine declines aborally, it is most likely the superior solubility of abiraterone acetate and abiraterone in intestinal fluids of the fed state that dictates the food effect. Furthermore, N-oxide abiraterone sulfate and abiraterone sulfate appeared in the duodenum at significantly later time points than abiraterone, suggesting biliary excretion of these abiraterone metabolites; this was confirmed by in situ biliary excretion experiments in rats.
ISSN:0022-3549