Block-Decoupling Multivariate Polynomials Using the Tensor Block-Term Decomposition

© Springer International Publishing Switzerland 2015. We present a tensor-based method to decompose a given set of multivariate functions into linear combinations of a set of multivariate functions of linear forms of the input variables. The method proceeds by forming a three-way array (tensor) by s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dreesen, Philippe, Goossens, T, Ishteva, M, De Lathauwer, Lieven, Schoukens, Johan
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue
container_start_page 14
container_title
container_volume 9237
creator Dreesen, Philippe
Goossens, T
Ishteva, M
De Lathauwer, Lieven
Schoukens, Johan
description © Springer International Publishing Switzerland 2015. We present a tensor-based method to decompose a given set of multivariate functions into linear combinations of a set of multivariate functions of linear forms of the input variables. The method proceeds by forming a three-way array (tensor) by stacking Jacobian matrix evaluations of the function behind each other. It is shown that a blockterm decomposition of this tensor provides the necessary information to block-decouple the given function into a set of functions with small input-output dimensionality. The method is validated on a numerical example.
format Conference Proceeding
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_509163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_509163</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_5091633</originalsourceid><addsrcrecordid>eNqNzL0KwjAcBPCAChbtO2RzkELSNE2z-oWLIFjnUupfjU2T0qSib6-iD-B0w93vBiiUImOMyjhOMiqGKCCMxJEUCRuj0LkbIYRynnGRBOiw0LaqoxVUtm-1Mhe867VX97JTpQe8t_ppbKNK7fDRfWp_BZyDcbbDX5pD1-CPb1rrlFfWTNHo_AYQ_nKCZpt1vtxGda-hv4MpTq4tKyhozBKeikwWnEiaMjZB8_-WhX949v_vC0WiUd0</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Block-Decoupling Multivariate Polynomials Using the Tensor Block-Term Decomposition</title><source>Lirias (KU Leuven Association)</source><source>Springer Books</source><creator>Dreesen, Philippe ; Goossens, T ; Ishteva, M ; De Lathauwer, Lieven ; Schoukens, Johan</creator><contributor>Koldovsky, Z ; Vincent, E ; Yeredor, A ; Tichavsky, P</contributor><creatorcontrib>Dreesen, Philippe ; Goossens, T ; Ishteva, M ; De Lathauwer, Lieven ; Schoukens, Johan ; Koldovsky, Z ; Vincent, E ; Yeredor, A ; Tichavsky, P</creatorcontrib><description>© Springer International Publishing Switzerland 2015. We present a tensor-based method to decompose a given set of multivariate functions into linear combinations of a set of multivariate functions of linear forms of the input variables. The method proceeds by forming a three-way array (tensor) by stacking Jacobian matrix evaluations of the function behind each other. It is shown that a blockterm decomposition of this tensor provides the necessary information to block-decouple the given function into a set of functions with small input-output dimensionality. The method is validated on a numerical example.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783319224817</identifier><identifier>ISBN: 3319224816</identifier><language>eng</language><publisher>Switzerland: Springer International Publishing</publisher><ispartof>Latent Variable Analysis and Signal Separation, 2015, Vol.9237, p.14-21</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,780,784,789,790,4048,4049,27859</link.rule.ids></links><search><contributor>Koldovsky, Z</contributor><contributor>Vincent, E</contributor><contributor>Yeredor, A</contributor><contributor>Tichavsky, P</contributor><creatorcontrib>Dreesen, Philippe</creatorcontrib><creatorcontrib>Goossens, T</creatorcontrib><creatorcontrib>Ishteva, M</creatorcontrib><creatorcontrib>De Lathauwer, Lieven</creatorcontrib><creatorcontrib>Schoukens, Johan</creatorcontrib><title>Block-Decoupling Multivariate Polynomials Using the Tensor Block-Term Decomposition</title><title>Latent Variable Analysis and Signal Separation</title><description>© Springer International Publishing Switzerland 2015. We present a tensor-based method to decompose a given set of multivariate functions into linear combinations of a set of multivariate functions of linear forms of the input variables. The method proceeds by forming a three-way array (tensor) by stacking Jacobian matrix evaluations of the function behind each other. It is shown that a blockterm decomposition of this tensor provides the necessary information to block-decouple the given function into a set of functions with small input-output dimensionality. The method is validated on a numerical example.</description><issn>0302-9743</issn><isbn>9783319224817</isbn><isbn>3319224816</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNzL0KwjAcBPCAChbtO2RzkELSNE2z-oWLIFjnUupfjU2T0qSib6-iD-B0w93vBiiUImOMyjhOMiqGKCCMxJEUCRuj0LkbIYRynnGRBOiw0LaqoxVUtm-1Mhe867VX97JTpQe8t_ppbKNK7fDRfWp_BZyDcbbDX5pD1-CPb1rrlFfWTNHo_AYQ_nKCZpt1vtxGda-hv4MpTq4tKyhozBKeikwWnEiaMjZB8_-WhX949v_vC0WiUd0</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Dreesen, Philippe</creator><creator>Goossens, T</creator><creator>Ishteva, M</creator><creator>De Lathauwer, Lieven</creator><creator>Schoukens, Johan</creator><general>Springer International Publishing</general><scope>FZOIL</scope></search><sort><creationdate>2015</creationdate><title>Block-Decoupling Multivariate Polynomials Using the Tensor Block-Term Decomposition</title><author>Dreesen, Philippe ; Goossens, T ; Ishteva, M ; De Lathauwer, Lieven ; Schoukens, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_5091633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dreesen, Philippe</creatorcontrib><creatorcontrib>Goossens, T</creatorcontrib><creatorcontrib>Ishteva, M</creatorcontrib><creatorcontrib>De Lathauwer, Lieven</creatorcontrib><creatorcontrib>Schoukens, Johan</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dreesen, Philippe</au><au>Goossens, T</au><au>Ishteva, M</au><au>De Lathauwer, Lieven</au><au>Schoukens, Johan</au><au>Koldovsky, Z</au><au>Vincent, E</au><au>Yeredor, A</au><au>Tichavsky, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Block-Decoupling Multivariate Polynomials Using the Tensor Block-Term Decomposition</atitle><btitle>Latent Variable Analysis and Signal Separation</btitle><date>2015</date><risdate>2015</risdate><volume>9237</volume><spage>14</spage><epage>21</epage><pages>14-21</pages><issn>0302-9743</issn><isbn>9783319224817</isbn><isbn>3319224816</isbn><abstract>© Springer International Publishing Switzerland 2015. We present a tensor-based method to decompose a given set of multivariate functions into linear combinations of a set of multivariate functions of linear forms of the input variables. The method proceeds by forming a three-way array (tensor) by stacking Jacobian matrix evaluations of the function behind each other. It is shown that a blockterm decomposition of this tensor provides the necessary information to block-decouple the given function into a set of functions with small input-output dimensionality. The method is validated on a numerical example.</abstract><cop>Switzerland</cop><pub>Springer International Publishing</pub></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Latent Variable Analysis and Signal Separation, 2015, Vol.9237, p.14-21
issn 0302-9743
language eng
recordid cdi_kuleuven_dspace_123456789_509163
source Lirias (KU Leuven Association); Springer Books
title Block-Decoupling Multivariate Polynomials Using the Tensor Block-Term Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Block-Decoupling%20Multivariate%20Polynomials%20Using%20the%20Tensor%20Block-Term%20Decomposition&rft.btitle=Latent%20Variable%20Analysis%20and%20Signal%20Separation&rft.au=Dreesen,%20Philippe&rft.date=2015&rft.volume=9237&rft.spage=14&rft.epage=21&rft.pages=14-21&rft.issn=0302-9743&rft.isbn=9783319224817&rft.isbn_list=3319224816&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_509163%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true