Block-Decoupling Multivariate Polynomials Using the Tensor Block-Term Decomposition

© Springer International Publishing Switzerland 2015. We present a tensor-based method to decompose a given set of multivariate functions into linear combinations of a set of multivariate functions of linear forms of the input variables. The method proceeds by forming a three-way array (tensor) by s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dreesen, Philippe, Goossens, T, Ishteva, M, De Lathauwer, Lieven, Schoukens, Johan
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:© Springer International Publishing Switzerland 2015. We present a tensor-based method to decompose a given set of multivariate functions into linear combinations of a set of multivariate functions of linear forms of the input variables. The method proceeds by forming a three-way array (tensor) by stacking Jacobian matrix evaluations of the function behind each other. It is shown that a blockterm decomposition of this tensor provides the necessary information to block-decouple the given function into a set of functions with small input-output dimensionality. The method is validated on a numerical example.
ISSN:0302-9743