Potential of Active Demand Reduction with Residential Wet Appliances: A Case Study for Belgium

© 2010-2012 IEEE. Two problems are tackled in this paper: determining the active demand reduction potential of wet appliances and making time series estimates from project data. The former is an application of the latter. Household groups representative to the average population are defined by apply...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Smart Grid 2015-01, Vol.6 (1), p.315-323
Hauptverfasser: Labeeuw, Wouter, Stragier, Jeroen, Deconinck, Geert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue 1
container_start_page 315
container_title IEEE Transactions on Smart Grid
container_volume 6
creator Labeeuw, Wouter
Stragier, Jeroen
Deconinck, Geert
description © 2010-2012 IEEE. Two problems are tackled in this paper: determining the active demand reduction potential of wet appliances and making time series estimates from project data. The former is an application of the latter. Household groups representative to the average population are defined by applying expectation maximization clustering to a representative measurement set (n = 1363). Attitudes toward active demand are found by conducting a survey (n = 418). Project data (n = 58) containing wet appliance measurements are scaled up by adapting the clustering algorithm, spreading the electricity demand of the wet appliances over the clusters. The potential for active demand reduction with wet appliances is 4% of the total residential power demand, assuming that 29% of the households take part. The potential is in the order of magnitude of the power reserves, but does not fulfill availability and response time requirements.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_463075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_463075</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_4630753</originalsourceid><addsrcrecordid>eNqVyr0OgjAUBeAOmmiUd7ibgyFBL6C44V8cjZq4SRp60WopxLb-vL0MPoCe5eScfC3WHSVh4mMQYYd5xlyDJogYj5MuO20rS9pKrqAqIM2tfBAsqeRawI6Ea45Kw1PaSzONFF97JAtpXSvJdU5mBiksuCHYWyfeUFR3mJM6S1f2WbvgypD37R4brFeHxca_OUXuQToTpuY5ZaMxhlE8mSZZGGMwifAfOfxNZvZl8QND5lG8</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Potential of Active Demand Reduction with Residential Wet Appliances: A Case Study for Belgium</title><source>Lirias (KU Leuven Association)</source><source>IEEE Electronic Library (IEL)</source><creator>Labeeuw, Wouter ; Stragier, Jeroen ; Deconinck, Geert</creator><creatorcontrib>Labeeuw, Wouter ; Stragier, Jeroen ; Deconinck, Geert</creatorcontrib><description>© 2010-2012 IEEE. Two problems are tackled in this paper: determining the active demand reduction potential of wet appliances and making time series estimates from project data. The former is an application of the latter. Household groups representative to the average population are defined by applying expectation maximization clustering to a representative measurement set (n = 1363). Attitudes toward active demand are found by conducting a survey (n = 418). Project data (n = 58) containing wet appliance measurements are scaled up by adapting the clustering algorithm, spreading the electricity demand of the wet appliances over the clusters. The potential for active demand reduction with wet appliances is 4% of the total residential power demand, assuming that 29% of the households take part. The potential is in the order of magnitude of the power reserves, but does not fulfill availability and response time requirements.</description><identifier>ISSN: 1949-3053</identifier><language>eng</language><publisher>Institute of Electrical and Electronics Engineers</publisher><ispartof>IEEE Transactions on Smart Grid, 2015-01, Vol.6 (1), p.315-323</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27837</link.rule.ids></links><search><creatorcontrib>Labeeuw, Wouter</creatorcontrib><creatorcontrib>Stragier, Jeroen</creatorcontrib><creatorcontrib>Deconinck, Geert</creatorcontrib><title>Potential of Active Demand Reduction with Residential Wet Appliances: A Case Study for Belgium</title><title>IEEE Transactions on Smart Grid</title><description>© 2010-2012 IEEE. Two problems are tackled in this paper: determining the active demand reduction potential of wet appliances and making time series estimates from project data. The former is an application of the latter. Household groups representative to the average population are defined by applying expectation maximization clustering to a representative measurement set (n = 1363). Attitudes toward active demand are found by conducting a survey (n = 418). Project data (n = 58) containing wet appliance measurements are scaled up by adapting the clustering algorithm, spreading the electricity demand of the wet appliances over the clusters. The potential for active demand reduction with wet appliances is 4% of the total residential power demand, assuming that 29% of the households take part. The potential is in the order of magnitude of the power reserves, but does not fulfill availability and response time requirements.</description><issn>1949-3053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyr0OgjAUBeAOmmiUd7ibgyFBL6C44V8cjZq4SRp60WopxLb-vL0MPoCe5eScfC3WHSVh4mMQYYd5xlyDJogYj5MuO20rS9pKrqAqIM2tfBAsqeRawI6Ea45Kw1PaSzONFF97JAtpXSvJdU5mBiksuCHYWyfeUFR3mJM6S1f2WbvgypD37R4brFeHxca_OUXuQToTpuY5ZaMxhlE8mSZZGGMwifAfOfxNZvZl8QND5lG8</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Labeeuw, Wouter</creator><creator>Stragier, Jeroen</creator><creator>Deconinck, Geert</creator><general>Institute of Electrical and Electronics Engineers</general><scope>FZOIL</scope></search><sort><creationdate>201501</creationdate><title>Potential of Active Demand Reduction with Residential Wet Appliances: A Case Study for Belgium</title><author>Labeeuw, Wouter ; Stragier, Jeroen ; Deconinck, Geert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_4630753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labeeuw, Wouter</creatorcontrib><creatorcontrib>Stragier, Jeroen</creatorcontrib><creatorcontrib>Deconinck, Geert</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>IEEE Transactions on Smart Grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labeeuw, Wouter</au><au>Stragier, Jeroen</au><au>Deconinck, Geert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential of Active Demand Reduction with Residential Wet Appliances: A Case Study for Belgium</atitle><jtitle>IEEE Transactions on Smart Grid</jtitle><date>2015-01</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>315</spage><epage>323</epage><pages>315-323</pages><issn>1949-3053</issn><abstract>© 2010-2012 IEEE. Two problems are tackled in this paper: determining the active demand reduction potential of wet appliances and making time series estimates from project data. The former is an application of the latter. Household groups representative to the average population are defined by applying expectation maximization clustering to a representative measurement set (n = 1363). Attitudes toward active demand are found by conducting a survey (n = 418). Project data (n = 58) containing wet appliance measurements are scaled up by adapting the clustering algorithm, spreading the electricity demand of the wet appliances over the clusters. The potential for active demand reduction with wet appliances is 4% of the total residential power demand, assuming that 29% of the households take part. The potential is in the order of magnitude of the power reserves, but does not fulfill availability and response time requirements.</abstract><pub>Institute of Electrical and Electronics Engineers</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE Transactions on Smart Grid, 2015-01, Vol.6 (1), p.315-323
issn 1949-3053
language eng
recordid cdi_kuleuven_dspace_123456789_463075
source Lirias (KU Leuven Association); IEEE Electronic Library (IEL)
title Potential of Active Demand Reduction with Residential Wet Appliances: A Case Study for Belgium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20of%20Active%20Demand%20Reduction%20with%20Residential%20Wet%20Appliances:%20A%20Case%20Study%20for%20Belgium&rft.jtitle=IEEE%20Transactions%20on%20Smart%20Grid&rft.au=Labeeuw,%20Wouter&rft.date=2015-01&rft.volume=6&rft.issue=1&rft.spage=315&rft.epage=323&rft.pages=315-323&rft.issn=1949-3053&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_463075%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true