Potential of Active Demand Reduction with Residential Wet Appliances: A Case Study for Belgium
© 2010-2012 IEEE. Two problems are tackled in this paper: determining the active demand reduction potential of wet appliances and making time series estimates from project data. The former is an application of the latter. Household groups representative to the average population are defined by apply...
Gespeichert in:
Veröffentlicht in: | IEEE Transactions on Smart Grid 2015-01, Vol.6 (1), p.315-323 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 323 |
---|---|
container_issue | 1 |
container_start_page | 315 |
container_title | IEEE Transactions on Smart Grid |
container_volume | 6 |
creator | Labeeuw, Wouter Stragier, Jeroen Deconinck, Geert |
description | © 2010-2012 IEEE. Two problems are tackled in this paper: determining the active demand reduction potential of wet appliances and making time series estimates from project data. The former is an application of the latter. Household groups representative to the average population are defined by applying expectation maximization clustering to a representative measurement set (n = 1363). Attitudes toward active demand are found by conducting a survey (n = 418). Project data (n = 58) containing wet appliance measurements are scaled up by adapting the clustering algorithm, spreading the electricity demand of the wet appliances over the clusters. The potential for active demand reduction with wet appliances is 4% of the total residential power demand, assuming that 29% of the households take part. The potential is in the order of magnitude of the power reserves, but does not fulfill availability and response time requirements. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_463075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_463075</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_4630753</originalsourceid><addsrcrecordid>eNqVyr0OgjAUBeAOmmiUd7ibgyFBL6C44V8cjZq4SRp60WopxLb-vL0MPoCe5eScfC3WHSVh4mMQYYd5xlyDJogYj5MuO20rS9pKrqAqIM2tfBAsqeRawI6Ea45Kw1PaSzONFF97JAtpXSvJdU5mBiksuCHYWyfeUFR3mJM6S1f2WbvgypD37R4brFeHxca_OUXuQToTpuY5ZaMxhlE8mSZZGGMwifAfOfxNZvZl8QND5lG8</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Potential of Active Demand Reduction with Residential Wet Appliances: A Case Study for Belgium</title><source>Lirias (KU Leuven Association)</source><source>IEEE Electronic Library (IEL)</source><creator>Labeeuw, Wouter ; Stragier, Jeroen ; Deconinck, Geert</creator><creatorcontrib>Labeeuw, Wouter ; Stragier, Jeroen ; Deconinck, Geert</creatorcontrib><description>© 2010-2012 IEEE. Two problems are tackled in this paper: determining the active demand reduction potential of wet appliances and making time series estimates from project data. The former is an application of the latter. Household groups representative to the average population are defined by applying expectation maximization clustering to a representative measurement set (n = 1363). Attitudes toward active demand are found by conducting a survey (n = 418). Project data (n = 58) containing wet appliance measurements are scaled up by adapting the clustering algorithm, spreading the electricity demand of the wet appliances over the clusters. The potential for active demand reduction with wet appliances is 4% of the total residential power demand, assuming that 29% of the households take part. The potential is in the order of magnitude of the power reserves, but does not fulfill availability and response time requirements.</description><identifier>ISSN: 1949-3053</identifier><language>eng</language><publisher>Institute of Electrical and Electronics Engineers</publisher><ispartof>IEEE Transactions on Smart Grid, 2015-01, Vol.6 (1), p.315-323</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27837</link.rule.ids></links><search><creatorcontrib>Labeeuw, Wouter</creatorcontrib><creatorcontrib>Stragier, Jeroen</creatorcontrib><creatorcontrib>Deconinck, Geert</creatorcontrib><title>Potential of Active Demand Reduction with Residential Wet Appliances: A Case Study for Belgium</title><title>IEEE Transactions on Smart Grid</title><description>© 2010-2012 IEEE. Two problems are tackled in this paper: determining the active demand reduction potential of wet appliances and making time series estimates from project data. The former is an application of the latter. Household groups representative to the average population are defined by applying expectation maximization clustering to a representative measurement set (n = 1363). Attitudes toward active demand are found by conducting a survey (n = 418). Project data (n = 58) containing wet appliance measurements are scaled up by adapting the clustering algorithm, spreading the electricity demand of the wet appliances over the clusters. The potential for active demand reduction with wet appliances is 4% of the total residential power demand, assuming that 29% of the households take part. The potential is in the order of magnitude of the power reserves, but does not fulfill availability and response time requirements.</description><issn>1949-3053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyr0OgjAUBeAOmmiUd7ibgyFBL6C44V8cjZq4SRp60WopxLb-vL0MPoCe5eScfC3WHSVh4mMQYYd5xlyDJogYj5MuO20rS9pKrqAqIM2tfBAsqeRawI6Ea45Kw1PaSzONFF97JAtpXSvJdU5mBiksuCHYWyfeUFR3mJM6S1f2WbvgypD37R4brFeHxca_OUXuQToTpuY5ZaMxhlE8mSZZGGMwifAfOfxNZvZl8QND5lG8</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Labeeuw, Wouter</creator><creator>Stragier, Jeroen</creator><creator>Deconinck, Geert</creator><general>Institute of Electrical and Electronics Engineers</general><scope>FZOIL</scope></search><sort><creationdate>201501</creationdate><title>Potential of Active Demand Reduction with Residential Wet Appliances: A Case Study for Belgium</title><author>Labeeuw, Wouter ; Stragier, Jeroen ; Deconinck, Geert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_4630753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labeeuw, Wouter</creatorcontrib><creatorcontrib>Stragier, Jeroen</creatorcontrib><creatorcontrib>Deconinck, Geert</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>IEEE Transactions on Smart Grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labeeuw, Wouter</au><au>Stragier, Jeroen</au><au>Deconinck, Geert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential of Active Demand Reduction with Residential Wet Appliances: A Case Study for Belgium</atitle><jtitle>IEEE Transactions on Smart Grid</jtitle><date>2015-01</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>315</spage><epage>323</epage><pages>315-323</pages><issn>1949-3053</issn><abstract>© 2010-2012 IEEE. Two problems are tackled in this paper: determining the active demand reduction potential of wet appliances and making time series estimates from project data. The former is an application of the latter. Household groups representative to the average population are defined by applying expectation maximization clustering to a representative measurement set (n = 1363). Attitudes toward active demand are found by conducting a survey (n = 418). Project data (n = 58) containing wet appliance measurements are scaled up by adapting the clustering algorithm, spreading the electricity demand of the wet appliances over the clusters. The potential for active demand reduction with wet appliances is 4% of the total residential power demand, assuming that 29% of the households take part. The potential is in the order of magnitude of the power reserves, but does not fulfill availability and response time requirements.</abstract><pub>Institute of Electrical and Electronics Engineers</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3053 |
ispartof | IEEE Transactions on Smart Grid, 2015-01, Vol.6 (1), p.315-323 |
issn | 1949-3053 |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_463075 |
source | Lirias (KU Leuven Association); IEEE Electronic Library (IEL) |
title | Potential of Active Demand Reduction with Residential Wet Appliances: A Case Study for Belgium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20of%20Active%20Demand%20Reduction%20with%20Residential%20Wet%20Appliances:%20A%20Case%20Study%20for%20Belgium&rft.jtitle=IEEE%20Transactions%20on%20Smart%20Grid&rft.au=Labeeuw,%20Wouter&rft.date=2015-01&rft.volume=6&rft.issue=1&rft.spage=315&rft.epage=323&rft.pages=315-323&rft.issn=1949-3053&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_463075%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |