Comparison of additive and multiplicative bayesian models for longitudinal count data with overdispersion parameters: a simulation study

In applied statistical data analysis, overdispersion is a common feature. It can be addressed using both multiplicative and additive random effects. A multiplicative model for count data incorporates a gamma random effect as a multiplicative factor into the mean, whereas an additive model assumes a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in Statistics: Simulation and Computation 2013, Vol.44 (2), p.454-473
Hauptverfasser: Aregay, M, Shkedy, Ziv, Molenberghs, Geert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In applied statistical data analysis, overdispersion is a common feature. It can be addressed using both multiplicative and additive random effects. A multiplicative model for count data incorporates a gamma random effect as a multiplicative factor into the mean, whereas an additive model assumes a normally distributed random effect, entered into the linear predictor. Using Bayesian principles, these ideas are applied to longitudinal count data, based on the so-called combined model. The performance of the additive and multiplicative approaches is compared using a simulation study. © 2015 Taylor & Francis Group, LLC.
ISSN:0361-0918