Peripheral "chicken" obestatin administration does not affect feed intake and gut muscle contractility of meat-type and layer-type chicks (Gallus gallus domesticus)

Obestatin has recently been discovered in the rat stomach. As for ghrelin, the 23-amino acid obestatin is also derived from post-translational processing of the prepro-ghrelin gene but seems to have opposite effects on feed intake. In avian species, ghrelin is mainly present in the proventriculus an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regulatory Peptides 2012-08, Vol.177 (1), p.60-67
Hauptverfasser: Song, Zhigang, Verhulst, Pieter-Jan, Ansari, Zarbakht, Thijs, Theo, Depoortere, Inge, Everaert, Nadia, Decuypere, Eddy, Buyse, Johan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Obestatin has recently been discovered in the rat stomach. As for ghrelin, the 23-amino acid obestatin is also derived from post-translational processing of the prepro-ghrelin gene but seems to have opposite effects on feed intake. In avian species, ghrelin is mainly present in the proventriculus and decreases feed intake, as opposed to its orexigenic properties in mammals. An obestatin-like sequence was also found in the avian ghrelin precursor protein but the potential involvement of this peptide in appetite regulation of chickens is unclear. We therefore investigated the effects of a single peripheral administration of this predicted "chicken" obestatin peptide on voluntary feed intake of 7- to 9-day-old meat-type and layer-type chicks. "Chicken" obestatin was injected intraperitoneally or intravenously at a dose of 1 nmol or 10 nmol/100 g body weight and feed intake was measured up to 4 h post injection. None of these treatments did reveal any effect of the putative "chicken" obestatin on appetite of either meat-type of layer-type chicks. Furthermore, "chicken" obestatin also failed to affect the in vitro contractility of muscle strips from crop and proventriculus. In conclusion, in the given experimental settings, the putative "chicken" obestatin has indistinctive physiological effects on feed intake and in vitro muscle contractility of gut segments, and hence its functional properties in ingestive behavior of avian species remain obscure.
ISSN:0167-0115