An iterative requirements engineering framework based on Formal Concept Analysis and C-K theory

In this paper, we propose an expert system for iterative requirements engineering using Formal Concept Analysis. The requirements engineering approach is grounded in the theoretical framework of C-K theory. An essential result of this approach is that we obtain normalized class models. Compared to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert Systems with Applications 2012-07, Vol.39 (9), p.8115-8135
Hauptverfasser: Poelmans, Jonas, Dedene, Guido, Snoeck, Monique, Viaene, Stijn
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose an expert system for iterative requirements engineering using Formal Concept Analysis. The requirements engineering approach is grounded in the theoretical framework of C-K theory. An essential result of this approach is that we obtain normalized class models. Compared to traditional UML class models, these normalized models are free of ambiguities such as many-to-many, optional-to-optional or reflexive associations which cause amongst others problems at design time. FCA has the benefit of providing a partial ordering of the objects in the conceptual model based on the use cases in which they participate. The four operators of the C-K design square give a clear structure to the requirements engineering process: elaboration, verification, modification and validation. In each of these steps the FCA lattice visualization plays a pivotal role. We empirically show how the strategy works by applying it to a set of case studies and a modeling experiment in which 20 students took part.
ISSN:0957-4174