Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors

Boosting large-scale superconductor applications require nanostructured conductors with artificial pinning centres immobilizing quantized vortices at high temperature and magnetic fields. Here we demonstrate a highly effective mechanism of artificial pinning centres in solution-derived high-temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Materials 2012-04, Vol.11 (4), p.329-336
Hauptverfasser: Llordes, A, Palau, A, Gazquez, J, Coll, M, Vlad, R, Pomar, A, Arbiol, J, Guzman, R, Ye, S, Rouco, V, Sandiumenge, F, Ricart, S, Puig, T, Varela, M, Chateigner, D, Vanacken, Johan, Gutierrez Royo, Joffre, Moshchalkov, Victor, Deutscher, G, Magen, C, Obradors, X
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Boosting large-scale superconductor applications require nanostructured conductors with artificial pinning centres immobilizing quantized vortices at high temperature and magnetic fields. Here we demonstrate a highly effective mechanism of artificial pinning centres in solution-derived high-temperature superconductor nanocomposites through generation of nanostrained regions where Cooper pair formation is suppressed. The nanostrained regions identified from transmission electron microscopy devise a very high concentration of partial dislocations associated with intergrowths generated between the randomly oriented nanodots and the epitaxial YBa2Cu3O7 matrix. Consequently, an outstanding vortex-pinning enhancement correlated to the nanostrain is demonstrated for four types of randomly oriented nanodot, and a unique evolution towards an isotropic vortex-pinning behaviour, even in the effective anisotropy, is achieved as the nanostrain turns isotropic. We suggest a new vortex-pinning mechanism based on the bond-contraction pairing model, where pair formation is quenched under tensile strain, forming new and effective core-pinning regions.
ISSN:1476-1122