A generalized eigenvalue problem for quasi-orthogonal rational functions
In general, the zeros of an orthogonal rational function (ORF) on a subset of the real line, with poles among {α1,...,αn} ⊂ (ℂ0 ∪ {∞}), are not all real (unless αn is real), and hence, they are not suitable to construct a rational Gaussian quadrature rule (RGQ). For this reason, the zeros of a so-ca...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2011-03, Vol.117 (3), p.463-506 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In general, the zeros of an orthogonal rational function (ORF) on a subset of the real line, with poles among {α1,...,αn} ⊂ (ℂ0 ∪ {∞}), are not all real (unless αn is real), and hence, they are not suitable to construct a rational Gaussian quadrature rule (RGQ). For this reason, the zeros of a so-called quasi-ORF or a so-called para-ORF are used instead. These zeros depend on one single parameter τ ∈ (ℂ ∪ {∞}), which can always be chosen in such a way that the zeros are all real and simple. In this paper we provide a generalized eigenvalue problem to compute the zeros of a quasi-ORF and the corresponding weights in the RGQ. First, we study the connection between quasi-ORFs, para-ORFs and ORFs. Next, a condition is given for the parameter τ so that the zeros are all real and simple. Finally, some illustrative and numerical examples are given. |
---|---|
ISSN: | 0029-599X |