Granular superconductivity in metallic and insulating nanocrystalline boron-doped diamond thin films
The low-temperature electrical transport properties of nanocrystalline boron-doped diamond (b-NCD) thin films have been found to be strongly affected by the system's granularity. The important differences between the high and low-temperature behaviour are caused by the inhomogeneous nucleation...
Gespeichert in:
Veröffentlicht in: | Journal of physics d-applied physics 2010-09, Vol.43 (37) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The low-temperature electrical transport properties of nanocrystalline boron-doped diamond (b-NCD) thin films have been found to be strongly affected by the system's granularity. The important differences between the high and low-temperature behaviour are caused by the inhomogeneous nucleation of superconductivity in the samples. In this paper we will discuss the experimental data obtained on several b-NCD thin films, which were studied by either varying their thickness or boron concentration. It will be shown that the low-temperature properties are influenced by the b-NCD grain boundaries as well as by the appearance of an intrinsic granularity inside these granules. Moreover, superconducting effects have been found to be present even in insulating b-NCD films and are responsible for the negative magnetoresistance regime observed at low temperatures. On the other hand, the low-temperature electrical transport properties of b-NCD films show important similarities with those observed for granular superconductors. |
---|---|
ISSN: | 0022-3727 |