Magnetic Properties of Substituted Poly(thiophene)s in Their Neutral State

The magnetic behavior of undoped (neutral), substituted poly(thiophene)s is reported. In particular, the influence of the nature of the substituent (alkyl, alkoxy, thioalkyl), the substitution pattern (head-to-tail (HT) versus head-to-head-tail-to-tail (HH-TT)), and the regioregularity oil the magne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2010-03, Vol.43 (6), p.2910-2915
Hauptverfasser: Vandeleene, Steven, Jivanescu, Mihaela, Stesmans, Andre, Cuppens, Jo, Van Bael, Margriet, Yamada, Hitoshi, Sato, Norio, Verbiest, Thierry, Koeckelberghs, Guy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The magnetic behavior of undoped (neutral), substituted poly(thiophene)s is reported. In particular, the influence of the nature of the substituent (alkyl, alkoxy, thioalkyl), the substitution pattern (head-to-tail (HT) versus head-to-head-tail-to-tail (HH-TT)), and the regioregularity oil the magnetic properties has been investigated. ESR spectroscopy reveals that the nature of the substituent determines the spin density, while the line width and asymmetry of the ESR signals are mainly governed by the substitution pattern and regioregularity. The spins give rise to a paramagnetic behavior. SQUID magnetometry reveals the presence of superparamagnetic order at room temperature, while ferromagnetism is observed at 5 K. The magnetic behavior observed by SQUID magnetometry does not (solely) originate front the ESR-active spin system. Its strength does therefore not depend on the ESR spin density, but seems to be governed by the supramolecular structure.
ISSN:0024-9297