Anti-monotonic overlap-graph support measures

In graph mining, a frequency measure is anti-monotonic if the frequency of a pattern never exceeds the frequency of a subpattern. The efficiency and correctness of most graph pattern miners relies critically on this property. We study the case where the dataset is a single graph. Vanetik, Gudes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Calders, Toon, Ramon, Jan, Van Dyck, Dries
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In graph mining, a frequency measure is anti-monotonic if the frequency of a pattern never exceeds the frequency of a subpattern. The efficiency and correctness of most graph pattern miners relies critically on this property. We study the case where the dataset is a single graph. Vanetik, Gudes and Shimony already gave sufficient and necessary conditions for anti-monotonicity of measures depending only on the edge-overlaps between the intances of the pattern in a labeled graph. We extend these results to homomorphisms, isomorphisms and homeomorphisms on both labeled and unlabeled, directed and undirected graphs, for vertex and edge overlap. We show a set of reductions between the different morphisms that preserve overlap. We also prove that the popular maximum independent set measure assigns the minimal possible meaningful frequency, introduce a new measure based on the minimum clique partition that assigns the maximum possible meaningful frequency and introduce a new measure sandwiched between the former two based on the poly-time computable Lov\'asz $\theta$-function.
ISSN:1550-4786