Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice
We investigated the therapeutic effects of two different versions of Abeta(1-15 (16)) liposome-based vaccines. Inoculation of APP-V717IxPS-1 (APPxPS-1) double-transgenic mice with tetra-palmitoylated amyloid 1-15 peptide (palmAbeta(1-15)), or with amyloid 1-16 peptide (PEG-Abeta(1-16)) linked to a p...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences of the United States of America 2007-06, Vol.104 (23), p.9810-5 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated the therapeutic effects of two different versions of Abeta(1-15 (16)) liposome-based vaccines. Inoculation of APP-V717IxPS-1 (APPxPS-1) double-transgenic mice with tetra-palmitoylated amyloid 1-15 peptide (palmAbeta(1-15)), or with amyloid 1-16 peptide (PEG-Abeta(1-16)) linked to a polyethyleneglycol spacer at each end, and embedded within a liposome membrane, elicited fast immune responses with identical binding epitopes. PalmAbeta(1-15) liposomal vaccine elicited an immune response that restored the memory defect of the mice, whereas that of PEG-Abeta(1-16) had no such effect. Immunoglobulins that were generated were predominantly of the IgG class with palmAbeta(1-15), whereas those elicited by PEG-Abeta(1-16) were primarily of the IgM class. The IgG subclasses of the antibodies generated by both vaccines were mostly IgG2b indicating noninflammatory Th2 isotype. CD and NMR revealed predominantly beta-sheet conformation of palmAbeta(1-15) and random coil of PEG-Abeta(1-16). We conclude that the association with liposomes induced a variation of the immunogenic structures and thereby different immunogenicities. This finding supports the hypothesis that Alzheimer's disease is a "conformational" disease, implying that antibodies against amyloid sequences in the beta-sheet conformation are preferred as potential therapeutic agents. |
---|---|
ISSN: | 0027-8424 |