Fabrication and Characterization of Zr and Hf Containing Vitrified Forms of Radioactive Waste
Vitrification, one of the most promising solidification processes for various materials, has been applied to radioactive waste to improve its disposal stability and reduce its volume. Because the thermal decomposition of dry active waste (DAW) significantly reduces its volume, the volume reduction f...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear fuel cycle and waste technology (Online) 2024-06, Vol.22 (2), p.173-183 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vitrification, one of the most promising solidification processes for various materials, has been applied to radioactive waste to improve its disposal stability and reduce its volume. Because the thermal decomposition of dry active waste (DAW) significantly reduces its volume, the volume reduction factor of DAW vitrification is high. The KHNP developed the optimal glass composition for the vitrification of DAW. Since vitrification offers a high-volume reduction ratio, it is expected that disposal costs could be greatly reduced by the use of such technology. The DG-2 glass composition was developed to vitrify DAW. During the maintenance of nuclear power plants, metals containing paper, clothes, and wood are generated. ZrO2 and HfO2 are generally considered to be network-formers in borosilicate-based glasses. In this study, a feasibility study of vitrification for DAW that contains metal particulates is conducted to understand the applicability of this process under various conditions. The physicochemical properties are characterized to assess the applicability of candidate glass compositions. |
---|---|
ISSN: | 1738-1894 2288-5471 |
DOI: | 10.7733/jnfcwt.2024.022 |