콩 생육초기 수분 장애에 따른 생육 및 수량 반응의 품종간 차이

Water deficit stress during early soybean[Glycin a max (L.) Merrill] growth stage is the most important environmental factor limiting productivity. Eight soybean genotypes were grown in replicated pot under well-watered(control: near 0 bar) and drought(-5 and -10 bars) conditions. Soybean plants wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Korean journal of crop science 1997-04, Vol.42 (2), p.220-227
Hauptverfasser: 진용문, 이홍석, 이석하, Yong Moon Jin, Hong Suk Lee, Suk Ha Lee
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water deficit stress during early soybean[Glycin a max (L.) Merrill] growth stage is the most important environmental factor limiting productivity. Eight soybean genotypes were grown in replicated pot under well-watered(control: near 0 bar) and drought(-5 and -10 bars) conditions. Soybean plants were subject to drought stress for 20 days at 10 days after seed emergence. Significant genotypic variation was observed for leaf area(LA) and total dry weight (TDW). At the end of mater stress, LA and TDW of Hwanggeumkong and Paldalkong, which had large LA in the non-stressed control, were more sensitive to water stress than those of the other cultivars, while those of Suwon 93 with small LA were insensitive. Leaf proline and abscisic acid(ABA) contents increased after water stress. However, changes in proline and ABA contents were not consistently related to the changes in LA as affected by water stress, As the soil water potential decreased, the yield reduction of Hodgson 78 showing large decrease in LA and TDW in response to water deficit was severe when compared to that of Baegunkong with small decrease in LA and TDW. Relatively greater yield stability and higher average yield across soil water potential were observed in Baegunkong. Of specific interest was the small reduction in yield of Paldalkong in spite of its significant decrease in LA and TDW.
ISSN:0252-9777
2287-8432