Enhancing the Durability and Surface Properties of Ceramic-Glass via DLC Coating Method

The purpose of this study was to investigate how diamond-like carbon (DLC) coatings could improve ceramic-glass durability and surface property. Ceramic-glass is valued for its aesthetic appeal. However, it is brittle and easily damaged. To address this issue, we looked into the use of DLC coatings...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science and technology 2024-10, Vol.23 (5), p.365-373
Hauptverfasser: Jae-un Kim, Byeong-seok Lim, Byung-woo Ahn, Young-shin Yun, Han-cheol Choe
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study was to investigate how diamond-like carbon (DLC) coatings could improve ceramic-glass durability and surface property. Ceramic-glass is valued for its aesthetic appeal. However, it is brittle and easily damaged. To address this issue, we looked into the use of DLC coatings known for their high hardness and low friction properties. Starting with cleaning the surface with linear ion guns to remove any impurities, a buffer layer was applied to enhance the adhesion of coatings. The DLC layer was deposited using unbalanced magnetron (UBM) sputtering, which maximized the deposition efficiency by controlling magnetic fields. Results demonstrated a significant improvement in mechanical properties of ceramic glass, with DLC-coated surfaces achieved a friction coefficient close to zero, a surface hardness of 22 GPa, and an adhesion strength exceeding 30 N. These findings confirm that DLC coatings can substantially increase the durability and extend the service life of ceramic glass, making them a promising solution for enhancing performances of high-cost brittle materials.
ISSN:1598-6462
2288-6524