Interconnection of the Gut-Skin Axis in NC/Nga Mouse with Atopic Dermatitis: Effects of the Three Types of Bifidobacterium bifidum CBT-BF3 (Probiotics, Postbiotics, and Cytosine-Phosphate- Guanine Oligodeoxynucleotide) on T Cell Differentiation and Gut Microbiota
The gut microbiota is an immune system regulator in the gut-skin axis. Dysfunctional interactions between the gut microbiota and the gut immune system can lead to the development of skin diseases such as atopic dermatitis (AD). Probiotics and postbiotics positively affect the balance of the gut micr...
Gespeichert in:
Veröffentlicht in: | Food science of animal resources 2024, Vol.44 (6), p.1417-1439 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The gut microbiota is an immune system regulator in the gut-skin axis. Dysfunctional interactions between the gut microbiota and the gut immune system can lead to the development of skin diseases such as atopic dermatitis (AD). Probiotics and postbiotics positively affect the balance of the gut microbiota, immune regulation, protection against pathogens, and barrier integrity. This study investigated the effects of probiotic Bifidobacterium bifidum, postbiotic B. bifidum (heat-killed), and cytosinephosphate-guanine oligodeoxynucleotide (CpG ODN) on the gut microbiota and T cell differentiation in NC/Nga mice induced with AD. 2,4-Dinitrochlorobenzene-induced AD mice had an increased SCORing atopic dermatitis-index and increased mRNA expression levels of Th2 and Th17 cell transcription factors and cytokines, and thymic stromal lymphopoietin (TSLP) cytokine in their mesenteric lymph nodes (mLNs; p |
---|---|
ISSN: | 2636-0772 2636-0780 |