A Review of Experimental and CFD Techniques to Characterize Macromixing via the Intensity of Segregation in a Rotating Bar Reactor
Several experimental and Computational Fluid Dynamics (CFD) methods have been developed to analyze and describe macromixing processes in a rotating bar reactor (RBR). This review provides an overview of the measurement methods of macromixing and delivers an assessment based on the concentration fiel...
Gespeichert in:
Veröffentlicht in: | Korean chemical engineering research 2024-11, Vol.62 (4), p.296-311 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several experimental and Computational Fluid Dynamics (CFD) methods have been developed to analyze and describe macromixing processes in a rotating bar reactor (RBR). This review provides an overview of the measurement methods of macromixing and delivers an assessment based on the concentration field. The concentrations are directly used to define the intensity of segregation (Is), and can reflect macromixing in a rotating bar reactor. Additionally, shows the investigations of the techniques available for portraying the intensity of segregation. This research is organized into three primary sections. The initial two sections focus on the overarching trends associated with the implementation of Conductivity, Planar Laser-Induced Fluorescence, and Electrical Resistance Tomography methods in RBR. An examination of the procedural steps, materials utilized, and the associated calculations was conducted. The final section addresses the simulation model of Computational Fluid Dynamics (CFD), detailing the necessary parameters, including the equations employed, boundary conditions, and the calculation procedures for determining the intensity of segregation. Subsequently, the study elucidates the feasibility of employing CFD as a precise technique for evaluating macromixing. The experimental techniques available were reviewed and compared in terms of their advantages, disadvantages, characterization capabilities, and scope of application. |
---|---|
ISSN: | 0304-128X 2233-9558 |