Development of Customer Review Ranking Model Considering Product and Service Aspects Using Random Forest Regression Method

Customer reviews are the second-most reliable source of information, followed by family and friend referrals. However, there are many existing customer reviews. Some online shopping platforms address this issue by ranking customer reviews according to their usefulness. However, we propose an alterna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSII transactions on Internet and information systems 2024-08, Vol.18 (8), p.2137-2156
Hauptverfasser: Arif Djunaidy, Nisrina Fadhilah Fano
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Customer reviews are the second-most reliable source of information, followed by family and friend referrals. However, there are many existing customer reviews. Some online shopping platforms address this issue by ranking customer reviews according to their usefulness. However, we propose an alternative method to rank customer reviews, given that this system is easily manipulable. This study aims to create a ranking model for reviews based on their usefulness by combining product and seller service aspects from customer reviews. This methodology consists of six primary steps: data collection and preprocessing, aspect extraction and sentiment analysis, followed by constructing a regression model using random forest regression, and the review ranking process. The results demonstrate that the ranking model with service considerations outperformed the model without service considerations. This demonstrates the model's superiority in the three tests, which include a comparison of the regression results, the aggregate helpfulness ratio, and the matching score.
ISSN:1976-7277
1976-7277