The G-Drazin Inverse of an Operator Matrix over Banach Spaces
Let be a Banach algebra. An element a ∈ has generalized Drazin inverse if there exists b ∈ such that b = bab, ab = ba, a - a2b ∈ qnil. New additive results for the generalized Drazin inverse of an operator over a Banach space are presented. we extend the main results of a paper of Shakoor, Yang and...
Gespeichert in:
Veröffentlicht in: | Kyungpook mathematical journal 2024, Vol.64 (2), p.205-218 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let be a Banach algebra. An element a ∈ has generalized Drazin inverse if there exists b ∈ such that b = bab, ab = ba, a - a2b ∈ qnil. New additive results for the generalized Drazin inverse of an operator over a Banach space are presented. we extend the main results of a paper of Shakoor, Yang and Ali from 2013 and of Wang, Huang and Chen from 2017. Appling these results to 2×2 operator matrices we also generalize results of a paper of Deng, Cvetković-Ilić and Wei from 2010. |
---|---|
ISSN: | 1225-6951 0454-8124 |