The G-Drazin Inverse of an Operator Matrix over Banach Spaces

Let be a Banach algebra. An element a ∈ has generalized Drazin inverse if there exists b ∈ such that b = bab, ab = ba, a - a2b ∈ qnil. New additive results for the generalized Drazin inverse of an operator over a Banach space are presented. we extend the main results of a paper of Shakoor, Yang and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kyungpook mathematical journal 2024, Vol.64 (2), p.205-218
Hauptverfasser: Farzaneh Tayebi, Nahid Ashrafi, Rahman Bahmani, Marjan Sheibani Abdolyousefi
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be a Banach algebra. An element a ∈ has generalized Drazin inverse if there exists b ∈ such that b = bab, ab = ba, a - a2b ∈ qnil. New additive results for the generalized Drazin inverse of an operator over a Banach space are presented. we extend the main results of a paper of Shakoor, Yang and Ali from 2013 and of Wang, Huang and Chen from 2017. Appling these results to 2×2 operator matrices we also generalize results of a paper of Deng, Cvetković-Ilić and Wei from 2010.
ISSN:1225-6951
0454-8124