이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발

경제성장과 산업 발전에 따라 반도체 제품부터 SMT 제품, 전기 배터리 제품에 이르기 까지 많은 전자통신 부품들의 제조과정에서 발생하는 철, 알루미늄, 플라스틱 등의 이물질로 인해 제품이 제대로 동작하지 않거나, 전기 배터리의 경우 화재를 발생하는 문제까지 심각한 문제로 이어질 가능성이 있다. 이러한 문제를 해결하기 위해 초음파나 X-ray를 이용한 비파괴 방법으로 제품 내부에 이물질이 있는지 판단하여 문제의 발생을 차단하고 있으나, X-ray 영상을 취득하여 이물질이 있는지 판정하는 데에도 여러 한계점이 존재한다. 특히. 크기가...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inteonet jeongbo hakoe nonmunji = Journal of Korean Society for Internet Information 2024-02, Vol.25 (1), p.99-107
Hauptverfasser: 엄기열, Ki-yeol Eom, 민병석, Byungseok Min
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:경제성장과 산업 발전에 따라 반도체 제품부터 SMT 제품, 전기 배터리 제품에 이르기 까지 많은 전자통신 부품들의 제조과정에서 발생하는 철, 알루미늄, 플라스틱 등의 이물질로 인해 제품이 제대로 동작하지 않거나, 전기 배터리의 경우 화재를 발생하는 문제까지 심각한 문제로 이어질 가능성이 있다. 이러한 문제를 해결하기 위해 초음파나 X-ray를 이용한 비파괴 방법으로 제품 내부에 이물질이 있는지 판단하여 문제의 발생을 차단하고 있으나, X-ray 영상을 취득하여 이물질이 있는지 판정하는 데에도 여러 한계점이 존재한다. 특히. 크기가 작거나 밀도가 낮은 이물질들은 X-Ray장비로 촬영을 하여도 보이지 않는 문제점이 있고, 잡음 등으로 인해 이물들이 잘 안 보이는 경우가 있으며, 특히 높은 생산성을 가지기 위해서는 빠른 검사속도가 필요한데, 이 경우 X-ray 촬영시간이 짧아지게 되면 신호 대비 잡음비율(SNR)이 낮아지면서 이물 탐지 성능이 크게 저하되는 문제를 가진다. 따라서, 본 논문에서는 저화질로 인해 이물질을 탐지하기 어려운 한계를 극복하기 위한 5단계 방안을 제안한다. 첫번째로, Global 히스토그램 최적화를 통해 X-Ray영상의 대비를 향상시키고, 두 번째로 고주파 영역 신호의 구분력을 강화하기 위하여 Local contrast기법을 적용하며, 세 번째로 Edge 선명도 향상을 위해 Unsharp masking을 통해 경계선을 강화하여 객체가 잘 구분되도록 한다, 네 번째로, 잡음 제거 및 영상향상을 위해 Resdual Dense Block(RDB)의 초고해상화 방법을 제안하며, 마지막으로 Yolov5 알고리즘을 이용하여 이물질을 학습한 후 탐지한다. 본 연구에서 제안하는 방식을 이용하여 실험한 결과, 저밀도 영상 대비 정밀도 등의 평가기준에서 10%이상의 성능이 향상된다. Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge cle
ISSN:1598-0170
2287-1136