Efficiency and accuracy of artificial intelligence in the radiographic detection of periodontal bone loss: A systematic review

Purpose: Artificial intelligence (AI) is poised to play a major role in medical diagnostics. Periodontal disease is one of the most common oral diseases. The early diagnosis of periodontal disease is essential for effective treatment and a favorable prognosis. This study aimed to assess the effectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Imaging science in dentistry 2023, Vol.53 (3), p.193-198
Hauptverfasser: Asmhan Tariq, Fatmah Bin Nakhi, Fatema Salah, Gabass Eltayeb, Ghada Jassem Abdulla, Noor Najim, Salma Ahmed Khedr, Sara Elkerdasy, Natheer Al-Rawi, Sausan Alkawas, Marwan Mohammed, Shishir Ram Shetty
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Artificial intelligence (AI) is poised to play a major role in medical diagnostics. Periodontal disease is one of the most common oral diseases. The early diagnosis of periodontal disease is essential for effective treatment and a favorable prognosis. This study aimed to assess the effectiveness of AI in diagnosing periodontal bone loss through radiographic analysis. Materials and Methods: A literature search involving 5 databases (PubMed, ScienceDirect, Scopus, Health and Medical Collection, Dentistry and Oral Sciences) was carried out. A specific combination of keywords was used to obtain the articles. The PRISMA guidelines were used to filter eligible articles. The study design, sample size, type of AI software, and the results of each eligible study were analyzed. The CASP diagnostic study checklist was used to evaluate the evidence strength score. Results: Seven articles were eligible for review according to the PRISMA guidelines. Out of the 7 eligible studies, 4 had strong CASP evidence strength scores (7-8/9). The remaining studies had intermediate CASP evidence strength scores (3.5-6.5/9). The highest area under the curve among the reported studies was 94%, the highest F1 score was 91%, and the highest specificity and sensitivity were 98.1% and 94%, respectively. Conclusion: AI-based detection of periodontal bone loss using radiographs is an efficient method. However, more clinical studies need to be conducted before this method is introduced into routine dental practice.
ISSN:2233-7822
2233-7830