Application study of silicon impression material for reducing metal artifacts: preliminary study for head and neck cancer radiotherapy

Metal artifacts cause inaccuracies in target delineation, radiation treatment planning, and delivery when computed tomography images of a radiotherapy patient implanted with a high-density material in the body are acquired. In this study, we investigated the possibility of obtaining improved images...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicine and life science 2023, Vol.20 (2), p.83-88
Hauptverfasser: So Hyun Park, Jinhyun Choi, Byungdo Park, Jeongho Kim, Heesoo Lim, Dae-Hyun Kim
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal artifacts cause inaccuracies in target delineation, radiation treatment planning, and delivery when computed tomography images of a radiotherapy patient implanted with a high-density material in the body are acquired. In this study, we investigated the possibility of obtaining improved images in clinical trials through metal artifact reduction using silicon impression materials without the need for a specific metal artifact reduction algorithm. A silicon impression material exhibiting a constant Hounsfield unit (HU) value according to the mixing ratio of the catalysts and bases was selected. The material did not exhibit any change in weight or shape over time. For both the instances of inserting the metal material and applying the silicon impression material, the HU value and dose were compared with homogeneous cases filled with water-equivalent materials. When the silicon impression material was applied to the region where the high-density material was located, the HU value was within 5% and the dose was within 3% compared with those of the homogeneous cases. In this study, the silicon impression materials reduced metal artifacts. However, because the composition, shape, size, and location of high-density materials differ, further studies are required to consider these factors in clinical applications.
ISSN:1738-1010
2671-4922