Reduced Cytotoxicity by Repetitive mRNA Transfection in Differentiated Neurons

Background and Objectives: mRNA-based protein expression technology has been used to express functional proteins. We have previously generated dopamine neurons from rat-embryo derived neural precursor cells (NPCs) through repeated transfection of synthetic transcription factor mRNA encoding dopamine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of stem cells 2023, Vol.16 (1), p.117-122
Hauptverfasser: Seung Hwan Ko, Jin Sun Kang, Sang-Mi Kim, Eun-Hye Lee, Chang-Hwan Park
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and Objectives: mRNA-based protein expression technology has been used to express functional proteins. We have previously generated dopamine neurons from rat-embryo derived neural precursor cells (NPCs) through repeated transfection of synthetic transcription factor mRNA encoding dopamine-inducible genes. However, NPCs began to die approximately 10 d post-transfection. In this study, we examined a long-term transfection protocol that did not affect cell viability. Methods and Results: Experiments were performed in eight groups sorted according to the start date of mRNA transfection. mRNA was transfected into NPCs daily for 21 d and live cell images of each group were recorded. NPCs which were differentiated for more than five days showed sustained gene expression and appreciable viability despite daily mRNA transfection for 21 d. Conclusions: Repeated mRNA transfection requires cells with a sufficient differentiation period.
ISSN:2005-3606
2005-5447