머신러닝 기반 수소 충전소 에너지 수요 예측 모델
수소 에너지는 높은 에너지 효율로 열과 전기를 생산하면서도 온실가스와 미세먼지 등 유해물질 배출이 없는 친환경 에너지로서, 전 세계적으로 탄소중립으로의 전환을 위한 핵심으로 주목받고 있다. 특히 스마트 수소에너지는 경제적이고 지속 가능하며, 안전한 미래 스마트 수소에너지 서비스로써 수소 에너지의 기반 시설이 디지털로 통합되어 ‘데이터’ 기반으로 안정적으로 운영되는 서비스를 의미한다. 본 논문에서는 데이터 기반 수소 충전소 수요예측 모델 구현을 위해 강원도 내 설치되어 있는 수소 충전소 3곳(춘천, 속초, 평창)을 선정, 수소 충전소...
Gespeichert in:
Veröffentlicht in: | Inteonet jeongbo hakoe nonmunji = Journal of Korean Society for Internet Information 2023-04, Vol.24 (2), p.47-56 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 수소 에너지는 높은 에너지 효율로 열과 전기를 생산하면서도 온실가스와 미세먼지 등 유해물질 배출이 없는 친환경 에너지로서, 전 세계적으로 탄소중립으로의 전환을 위한 핵심으로 주목받고 있다. 특히 스마트 수소에너지는 경제적이고 지속 가능하며, 안전한 미래 스마트 수소에너지 서비스로써 수소 에너지의 기반 시설이 디지털로 통합되어 ‘데이터’ 기반으로 안정적으로 운영되는 서비스를 의미한다. 본 논문에서는 데이터 기반 수소 충전소 수요예측 모델 구현을 위해 강원도 내 설치되어 있는 수소 충전소 3곳(춘천, 속초, 평창)을 선정, 수소 충전소의 수요공급 데이터를 확보하였고, 머신러닝 및 딥러닝 알고리즘 7개를 선정하여 총 27종 입력 데이터(기상데이터+수소 충전소 수요량)로 모델을 학습하였고, 평균 제곱근 오차(RMSE)로 모델을 평가하였다. 이를 통해 본 논문에서는 최적의 수소 에너지 수요공급을 위한 머신러닝 기반 수소 충전소 에너지 수요 예측 모델을 제안한다.
Hydrogen energy is an eco-friendly energy that produces heat and electricity with high energy efficiency and does not emit harmful substances such as greenhouse gases and fine dust. In particular, smart hydrogen energy is an economical, sustainable, and safe future smart hydrogen energy service, which means a service that stably operates based on 'data' by digitally integrating hydrogen energy infrastructure. In this paper, in order to implement a data-based hydrogen charging station demand forecasting model, three hydrogen charging stations (Chuncheon, Sokcho, Pyeongchang) installed in Gangwon-do were selected, supply and demand data of hydrogen charging stations were secured, and 7 machine learning and deep learning algorithms were used. was selected to learn a model with a total of 27 types of input data (weather data + demand for hydrogen charging stations), and the model was evaluated with root mean square error (RMSE). Through this, this paper proposes a machine learning-based hydrogen charging station energy demand prediction model for optimal hydrogen energy supply and demand. |
---|---|
ISSN: | 1598-0170 2287-1136 |