UNIQUENESS RESULTS ON MEROMORPHIC FUNCTIONS AND THEIR DIFFERENCE OPERATORS SHARING TARGETS WITH WEIGHT
Let f be a nonconstant meromorphic function of hyper-order strictly less than 1, and let c ∈ ℂ \ {0} such that f(z + c) ≢ f(z). We prove that if f and its exact difference ∆cf(z) = f(z + c) - f(z) share partially 0, ∞ CM and share 1 IM, then ∆cf = f, where all 1-points with multiplicities more than...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2023, Vol.60 (2), p.461-473 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let f be a nonconstant meromorphic function of hyper-order strictly less than 1, and let c ∈ ℂ \ {0} such that f(z + c) ≢ f(z). We prove that if f and its exact difference ∆cf(z) = f(z + c) - f(z) share partially 0, ∞ CM and share 1 IM, then ∆cf = f, where all 1-points with multiplicities more than 2 do not need to be counted. Some similar uniqueness results for such meromorphic functions partially sharing targets with weight and their shifts are also given. Our results generalize and improve the recent important results. |
---|---|
ISSN: | 1015-8634 |