NEW EXTENSION FOR REVERSE OF THE OPERATOR CHOI-DAVIS-JENSEN INEQUALITY
In this paper, we introduce the reverse of the operator Davis- Choi-Jensen’s inequality. Our results are employed to establish a new bound for the Furuta inequality. More precisely, we prove that, if A, B ∈ B (H) are self-adjoint operators with the spectra contained in the interval [m, M] with m <...
Gespeichert in:
Veröffentlicht in: | Honam mathematical journal 2023, Vol.45 (1), p.123-129 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce the reverse of the operator Davis- Choi-Jensen’s inequality. Our results are employed to establish a new bound for the Furuta inequality. More precisely, we prove that, if A, B ∈ B (H) are self-adjoint operators with the spectra contained in the interval [m, M] with m < M and A ≤ B, then for any r ≥ □ > 1, t ∈ (0, 1) Ar ≤ (□□ m rt + □□ M rt )□ ≤ K (m, M, r)B r , where K (m, M, r) is the generalized Kantorovich constant. |
---|---|
ISSN: | 1225-293X |