ON A GENERALIZATION OF ⊕-CO-COATOMICALLY SUPPLEMENTED MODULES
In this paper, we define ⊕δ-co-coatomically supplemented and co-coatomically δ-semiperfect modules as a strongly notion of ⊕-co-coatomically supplemented and co-coatomically semiperfect modules with the help of Zhou’s radical. We say that a module A is ⊕δ-co-coatomically supplemented if each co-coat...
Gespeichert in:
Veröffentlicht in: | Honam mathematical journal 2023, Vol.45 (1), p.146-159 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we define ⊕δ-co-coatomically supplemented and co-coatomically δ-semiperfect modules as a strongly notion of ⊕-co-coatomically supplemented and co-coatomically semiperfect modules with the help of Zhou’s radical. We say that a module A is ⊕δ-co-coatomically supplemented if each co-coatomic submodule of A has a δ-supplement in A which is a direct summand of A. And a module A is co-coatomically δ-semiperfect if each coatomic factor module of A has a projective δ-cover. Also we define co-coatomically amply δ-supplemented modules and we examined the basic properties of these modules. Furthermore, we give a ring characterization for our modules. In particular, a ring R is δ-semiperfect if and only if each free R-module is co-coatomically δ-semiperfect. |
---|---|
ISSN: | 1225-293X |