PA 흉부 X-선 영상 패치 분할에 의한 지역 특수성 이상 탐지 방법

COVID-19로 대표되는 팬데믹 상황에서 의료 인력 부족으로 인한 문제가 대두되고 있다. 본 논문에서는 진단 업무를 지원하기 위한 컴퓨터 비전 솔루션으로 PA 흉부 X-선 영상에 대한 병변 유무 진단 방법에 대해 제시한다. 디지털 영상에 대한 특징 비교 방식의 이상 탐지 기법을 X-선 영상에 적용하여 비정상적인 영역을 예측할 수 있다. 정렬된 PA 흉부 X-선 영상으로부터 특징 벡터를 추출하고 패치 단위로 분할하여 지역적으로 등장하는 비정상을 포착한다. 사전 실험으로 다중 객체를 포함하는 시뮬레이션 데이터 세트를 생성하고 이에 대...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inteonet jeongbo hakoe nonmunji = Journal of Korean Society for Internet Information 2023, Vol.24 (1), p.49-59
Hauptverfasser: 김현빈, Hyun-bin Kim, 전준철, Jun-chul Chun
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:COVID-19로 대표되는 팬데믹 상황에서 의료 인력 부족으로 인한 문제가 대두되고 있다. 본 논문에서는 진단 업무를 지원하기 위한 컴퓨터 비전 솔루션으로 PA 흉부 X-선 영상에 대한 병변 유무 진단 방법에 대해 제시한다. 디지털 영상에 대한 특징 비교 방식의 이상 탐지 기법을 X-선 영상에 적용하여 비정상적인 영역을 예측할 수 있다. 정렬된 PA 흉부 X-선 영상으로부터 특징 벡터를 추출하고 패치 단위로 분할하여 지역적으로 등장하는 비정상을 포착한다. 사전 실험으로 다중 객체를 포함하는 시뮬레이션 데이터 세트를 생성하고 이에 대한 비교 실험 결과를 제시한다. 정렬된 영상에 대해 적용 가능한 패치 특징 하드마스킹을 통해 프로세스의 효율성 및 성능을 향상하는 방법을 제시한다. 지역 특수성 및 전역 이상 탐지 결과를 합산하여 기존 연구 대비 6.9%p AUROC 향상된 성능을 보인다. Recently, attention to the pandemic situation represented by COVID-19 emerged problems caused by unexpected shortage of medical personnel. In this paper, we present a method for diagnosing the presence or absence of lesional sign on PA chest X-ray images as computer vision solution to support diagnosis tasks. Method for visual anomaly detection based on feature modeling can be also applied to X-ray images. With extracting feature vectors from PA chest X-ray images and divide to patch unit, region-specific abnormality can be detected. As preliminary experiment, we created simulation data set containing multiple objects and present results of the comparative experiments in this paper. We present method to improve both efficiency and performance of the process through hard masking of patch features to aligned images. By summing up regional specificity and global anomaly detection results, it shows improved performance by 0.069 AUROC compared to previous studies. By aggregating region-specific and global anomaly detection results, it shows improved performance by 0.069 AUROC compared to our last study.
ISSN:1598-0170
2287-1136